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Ft. Collins, CO 80523
June 25, 2004

1 Introduction

We summarize the results of our most recent ONR contract, “Reduced Rank
Wiener Filters in Optimized Coordinates for Partially Adaptive Filtering in
Passive and Active Sonar Arrays,” ONR Contract N00014-01-1-1019, by giv-
ing a narrative account of what we have found and where we have published
it. We offer a discussion of open questions, as these inform our continuing
work, under ONR, support.

Our work falls into the category of fundamental research initiatives ad-
dressed to passive sonar surveillance from large sonar arrays deployed in
complex acoustic environments.




2 Coordinate Systems for Reduced Rank De-
tection and Estimation, including Conju-
gate Direction and Multistage Wiener Fil-
ters

2.1 Narrative

One of the main goals of our research program was to derive structures
and algorithms for filtering in optimized coordinates of low-dimensional sub-
spaces, with a view to reducing computational complexity and improving
convergence time of adaptive algorithms.

Our recent ASAP 2003 paper, ref [1] below, brings a lot of insight into
the multistage Wiener filter (MSWF). It establishes that for every MSWF,
whether or not it is orthogonal, there is a corresponding conjugate direc-
tion Wiener filter (CDWF). This means the entire literature of conjugate
direction algorithms, including quasi-Newtons, is opened up for exploration
of algorithms. These algorithms can generate coordinate systems for low-
dimensional subspaces other than the Krylov subspace, which is what we
are stuck with in orthogonal MSWFs and conjugate gradient Wiener filters
(CGWFs). This seems quite important, and it generalizes the previously
known result that orthogonal MSWFs are equivalent to CGWFs. Moreover,
it suggests that the literature of classical optimization theory may now be
mined for efficient algorithms that iteratively add useful dimensions to ex-
panding subspaces for array processing, without the constraint that these
new dimensions span an expanding Krylov subspace.

On the negative side, the MSWF and its close cousin the CDWF, re-
quire recomputation for each new beamsteering direction in passive sonar.
A possible way around this problem is to extend the CDWF to the vector
case, wherein the filter is designed to simultaneously estimate signals from
several different directions. In principle, the number of directions can ex-
ceed the number of measurements, making the problem underdetermined.
Nonetheless, the CDWF can be applied. One full rank solution will serve
simultaneously for many nearby look directions. So there is a need to extend
CDWFs for beamforming simultaneously to several directions. Moreover, it
remains an open question whether or not there is a true space-time CDWF
for estimating the time-series radiated by a source, from an array’s worth of



time series data.

As we argue in the section on Modelling and Processing of Nonproper
Complex Signals, it is now becoming more clear that complex baseband
data cannot be assumed proper, meaning standard linear and Hermitian
quadratic forms cannot be considered sufficient statistics, even in the mul-
tivariate Gaussian case. Thus there is a need to re-work all of the work on
CDWFs for nonproper complex data.

Ref [2] below establishes the role of canonical coordinate and half canon-
ical coordinate mappings in two-channel least squares problems. It derives
several alternating power methods, with deflation, for computing canonical
coordinate mappings. The importance of this work is the following: in spite
of the fact that a vector version of the CDWF will construct a useful basis for
the matrix Wiener filter, the system of canonical coordinates is incontestably
the optimum coordinate system of a given dimension for partially adaptive
filtering. The problem is computing the system. The results of ref [2] give ef-
ficient, time- and order-recursions for tracking canonical coordinates. These
results have yet to be applied to beamforming.

2.2 References

1. L. L. Scharf, L. T. McWhorter, E. K. P. Chong, J. S. Goldstein, and M.
D. Zoltowski, “Algebraic Equivalence of Conjugate Direction and Mul-
tistage Wiener Filters,” 12th MIT Lincoln Labs Workshop on Adaptive
Sensor and Array Processing, Lexington, MA, Mar 11-13, 2003.

2. A. Pezeshki, L.L. Scharf, M.A. Azimi-Sadjadi, and Y. Hua, “Two-
Channel Least Squares Problems: Power Methods for Solving Them

and Connections with Canonical Coordinates,” IEEE Trans Sign Proc,
submitted Apr 1, 2003.

3. L.L. Scharf, J. K. Thomas, and B.D. VanVeen, “Good Canonical Co-
ordinates for Estimation are Bad Canonical Coordinates for Detection,
and Vice-Versa,” IEEE Trans Signal Proc, submitted May 2002, in
revision.

"Kernel-Based Canonical Coordinate




2.3 Open Questions

When extended to the vector case, the CDWF may be used to simultane-
ously beamform to a multiplicity of beamsteering directions, providing a way
to account for correlated multipath. Extended to the time series case, the
CDWF may be used to implement full space-time processing of time-series
from a multiplicity of array sensors. This is called MIMO processing. So,
continuing work in this area would extend the theory of iterative Wiener
filtering, wherein expanding subspaces are constructed for signal processing
in low-dimensional subspaces, to include

e quasi-Newton algorithms for vector and time-series processing of non-
proper complex data, using the CDWF,

o extension of CDWFs to the full MIMO case of estimating and detecting
multiple time series, from multiple sources, using a vectors worth of
time series at a multisensor array,

e a least squares version of CDWFs that allows recursive time- and order
updates of the expanding subspace,

e extension of the CDWF to nonproper complex data, leading to pairwise
filtering of complex data, and its complex conjugate,

e time- and order- updates for canonical coordinate maps, applied to
partially adaptive beamforming.

3 Beamforming and Diversity Combining in
Arrays

3.1 Narrativé

In ref [1], communication receivers are derived for two extreme channels: the
wavefront fading channel and the element-to-element fading channel. In each
case the receiver is a matched subspace detector. These results are fundamen-
tal to our emerging understanding of sonar array processing in fading chan-
nels, for they suggest that a very general array processor should be trading
off local, coherent, linear beamforming against global, noncoherent quadratic
diversity combining. The trick is to determine how much beamforming to
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do and how much diversity combining to do. Our current thinking is that a
multiple coherence test should be run on the multsensor data to determine
how to cluster elements into sets that may be beamformed. Then disjoint
sets of beamformed elements may be diversity combined. This discussion is
reminiscent of subarray processing within large arrays. What may be origi-
nal in our discussion is the use of multiple coherence as a clustering test for
deciding how to cluster elements into subarrays. When the channel is fully
wavefront coherent, then the clustering test should produce the full array
as the single subarray. When the channel is a full diversity channel with no
wavefront coherence, then the clustering test should decompose the full array
into L subarrays, each consisting of a single element. Of course all interest-
ing cases lie somewhere in between. to be worked out and evaluated, The
basic objective of trading beamforming and diversity in large arrays seems to
be the correct way to think about the management of spatial and temporal
coherence.

In ref [2] below, a new DOA estimator is derived, based on an original
ratio of quadratic forms. The estimator outperforms MUSIC at low SNR.
generate interest in implementing it on

3.2 References

1. M.L. McCloud, L.L. Scharf, and M. Varanasi, “Beamforming, Diversity,
and Interference Rejection for Communication over Fading Channels

using a Receive Antenna Array,” IEEE Trans Commun, vol 50, no 1,
pp 116-124 , Jan 2003.

2. M.L. McCloud and L.L. Scharf, “A New Subspace Identification Al-
gorithm for High Resolution DOA Estimation,” IEEE Trans Ant and
Prop, vol 50, no 10, pp 1382-1390, Oct 2002.

3. L.L. Scharf, S. Kraut, and L.T. McWhorter, “Capon redux: new for-
mulas, geometries, and computational efficiencies,” ASAP 2002, MIT
Lincoln Labs, Mar 2002, Mar 12-14; also in preparation for IEEE Trans
Signal Proc. A




3.3 Open Questions

Much of modern passive sonar signal processing is based on the resolution
of a sample covariance matriz. The quality of this matrix is determined by
the number of independent snapshots that may be averaged, leading to the
problem of low sample support for nonstationary problems and/or imperfect
channels. It seems to us that there is a trade-off between averaging time
and length of aperture over which this averaging is done. In a very large
aperture, sample support will be limited because spatial coherence will not
hold up over a large aperture where angular resolution is fine-grained. It will,
however, hold up over short subapertures where resolution is coarse-grained.
So the problem of trading detectability and resolution seems to us to be a
problem of trading subarray clustering for averaging. A large array that is
clustered into subarrays will support more temporal averaging than the large
array. Then the subarrays may be used for coherent beamforming with large
sample support and the collection of subsarrays may be used for noncoher-
ent diversity combining. Our intuition says the resulting beamformers will
consist of matched and adaptive subspace detectors, wherein array data is
coherently beamformed within a subarray, and then noncoherently diversity
combined across subarrays.
So, continuing work in this area would

e study the problem of trading off temporal averaging and spatial clus-
tering,

e develop and evaluate various coherence tests for clustering of arrays
into subarrays,

e develop corresponding matched subspace detectors that combine beam-
forming and diversity, and analyze performance,

e run beamforming and diversity algorithms on our array simulator to
produce bearing responses, bearing-time, and FRAZ plots.

The right way to think about beamforming, whether conventional or mod-
ern, is that consecutive snapshots are noncoherently averaged to obtain a
sample covariance matrix, which is then tailored with the SVD and used
in a beamformer structure like Bartlett, Capon, MUSIC, diagonal averag-
ing, subspace MUSIC, or what have you. If there is temporal coherence to
be exploited, then averaging may be done coherently in time, rather than
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noncoherently. Continuing work in this area would exploit temporal coher-
ence by coherently averaging before beamforming. This, again, is a topic in
beamforming vs diversity.

Another important problem is wavefront compensation for wrinkled wave-
fronts. One approach, based on the matched subspace detector, is to widen
the spatial beamwidth, or subspace bandwidth, by replacing quadratic forms
in rank-one beamformers (or steering vectors) with multirank beamformers
based on a multidimensional subspace. The subspace is built from a standard
steering vector and nearby steering vectors that are constructed from angu-
lar derivatives. This allows the wavefront of the propagating field to be any
wrinkling of a plane wave that can be modelled as a linear combination of a
steering vector and a few of its derivatives. This is a conservative approach
that sacrifices spatial resolution for detectability. That is, detectability in-
creases because more energy is accounted for than would be accounted for
with a mismatched rank-one beamformer, but resolution is sacrificed because
multidimensional subspaces are harder to resolve than one dimensional steer-
ing vectors. A more aggressive approach is to try and fit a one-dimensional
subspace to the wavefront, by optimizing with respect to a vector of complex
phasings that are designed to iron out the wrinkled wavefront. Such an ap-
proach would aim to take the sample covariance matrix to a low rank matrix
by applying a single diagonal demodulation matrix to the snapshots. This is
reminiscent of complex demodulation, but here the complex demodulation is
not with respect to a single frequency, and it is applied across space, so to
speak, and not time. This idea is a variation on a technique called steered
covariance matrices, but it is designed to iron out wavefronts rather than
iron out variations over frequency bands, as originally proposed. It is not yet
clear what principle should be used to iron out a wavefront, but one candi-
date is to design a diagonal phase compensating matrix that minimizes the
rank of the sample covariance matrix. Continuing work in this area would
use subspace methods to match to wrinkled wavefronts that may be modelled
as elements of a multi-dimensional subspace of wavefronts.




4 Matched and Adaptive Subspace Detec-
tors and Estimators

4.1 Narrative

Another area of focus in our research program has been the development
of blind adaptive detectors and estimators in interference-dominated prob-
lems. In ref [1] below we show that in interference-dominated problems, all
principles for detection and estimation in the multivariate Gaussian model
produce the same answer, namely an interference rejecting oblique projec-
tion, followed by linear or quadratic processing. The structures are naturally
low-rank, and they are even more aggressive in their use of singular-value
shaping than are the robust adaptive beamformers of Cox and Owsley. We
have simulated these detectors on our array simulator. generate interest in
implementing them on

The result of ref [2] puts the final touch on what has been a seven-year,
ONR-supported, development of matched and adaptive subspace detectors,
beginning with the early work of Scharf and his collaborators, and concluding
with the work of Kraut and his collaborators. Ref [2] shows that ACE, the
adaptive coherence estimator, is uniformly most powerful among all detectors
that have the strong false alarm rate property required in adaptive array
processing. This is the strongest statement of optimality that can be made
for an adaptive detector, and we know of no other detectors for which similar
claims can be made.

In ref [3] matched subspace detectors are extended to stochastic signals,
for which a preferred direction in a subspace is coded with a probability
distribution on the complex mode parameters.

4.2 References

1. L.L. Scharf and M.L. McCloud, “Blind Adaptation of Zero-Forcing Pro-
jections and Oblique Pseudo-Inverses for Detection and Estimation
when Interference Dominates Noise,” IEEE Trans Signal Proc, vol 50,
no 12, pp 2938-2946, Dec 2002; also L.L. Scharf and M.L. McCloud,
“Detection and Estimation when Interference Dominates Noise,” Proc
34th Asilomar Conf Signals, System, and Computers, Pacific Grove,
CA, Nov 2000; also L.L. Scharf and M.L. McCloud, “Data-Adaptive
and Reduced-Rank Detectors and Estimators for Radar, Sonar, and
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4.3

Data Commmunication,” Joint U.S-Australian Conf on Defense Appli-
cations of Signal Processing, Adelaide, June 2002.

. S. Kraut, L.L. Scharf, and R. Butler, ”The Adaptive Coherence Esti-

mator is a Maximal Invariant Statistic for Uniformly Most Powerful In-
variant Detection,” IEEE Trans Signal Processing, to appear 2004; also
S. Kraut, L.L. Scharf, and R. Butler,“ACE is Uniformly Most Powerful
Invariant,” 36th Asilomar Conf on Signals, Systems, and Computers,
Pacific Grove, CA, Nov 4-7, 2002.

L. T. McWhorter and L. L. Scharf, “Matched Subspace Detectors for
Stochastic Signals,” 12th MIT Lincoln Labs Workshop on Adaptive
Sensor and Array Processing, Lexington, MA, Mar 11-13, 2003; also in
preparation for IEEE Trans Signal Procesing.

S. Kraut, L. L. Scharf, and L. T. McWhorter; “Adaptive Subspace
Detectors,” IEEE Trans Signal Proc, vol 49, no 1, pp 1-16, Jan 2001.

. J. Gubner and L.L. Scharf, “Spread Subspace Communications: Power

Control, Detectors, and Probability of Error,” IEEE Trans Inform Th,
to appear 2004; also J. Gubner and L.L. Scharf, “Detection of Subspace
Waveforms in Subspace Interference and Noise,” Proc ICASSP 2000,
Istanbul, June 2000.

Open Questions

It is almost impossible to come up with anything other than a matched
or adaptive subspace detector in multisensor array processing for sonar or
radar under the multivariate Gaussian model. We continue to find applica-
tions for matched and adaptive subspace detectors, which were discovered
under ONR support. Our continuing work has produced matched direction
detectors, which are an important variation on matched subspace detectors.
It remains to be seen what role matched subspace and matched direction de-
tectors will play in robust adaptive beamforming with wrinkled wavefronts
and/or miscalibrated arrays.




5 Modelling and Processing of Nonproper Com-
plex Signals

5.1 Narrative

All of sonar and radar signal processing is done at baseband, under the as-
sumption that complex baseband signals are proper. Then, typically, only lin-
ear and Hermitian quadratic forms are used. But complex baseband versions
of real, nonstationary passband signals are nonproper, calling into question
our basic assumptions and suggesting that widely linear and non-Hermitian
quadratic forms should be used to improve performance of beamformers, de-
tectors, and estimators. In the papers listed below, the theory of nonproper
signal processing is extended in several important ways.

Ref [1] below develops the full theory of nonproper complex vectors and
processes, including the study of generalized analytic signals. Ref [2] estab-
lishes that time-frequency distributions for nonstationary signals (the only
ones of interest in sonar and radar) must include the complementary com-
ponent of the distribution. This has never been done in sonar.

Ref [3] derives a fundamental limit on the potential processing gain that
can be gained with widely linear, as opposed to linear, processing. This gain is
3 dB for all estimation and detection problems involving complex baseband
signals that are nonproper. This is our most important theoretical finding,
for it lays the foundation for a host of applications of widely linear process-
ing in sonar and radar. We do not claim that this gain is to be had in all
practical applications of the theory, but we do claim that at little additional
computing cost, there is potential gain. These results could well be useful for
the next refinement to adaptive beamforming. McWhorter has results show-
ing that correlated multipath produces nonproper complex data at baseband,
suggesting that widely linear and non-Hermitian quadratic processing might
be required to make beamforming and DOA algorithms work in correlated
multipath. This would be a revolutionary finding.

5.2 References

1. P.J. Schreier and L.L. Scharf, “Second-Order Analysis of Improper Com-
plex Random Vectors and Processes,” IEEE Trans Signal Proc, vol 51,
no 2, pp 714-725, Mar 2003.
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2. P.J. Schreier and L.L. Scharf, “Stochastic Time-Frequency Analysis us-
ing the Analytic Signal: Why the Complementary Distribution Mat-
ters,” IEEE Trans Signal Proc, vol 51, no 12 , pp 3071-3079, Dec 2003.

3. P.J. Schreier, L.L. Scharf, and C.T. Mullis, “Detection and Estimation
of Improper Complex Random Signals,” IEEE Trans Inform Th, to
appear 2004; also P.J. Schreier and L.L. Scharf, “The Karhunen-Loeve
Expansion for Improper Complex Random Signals with Applications
to Detection,” IEEE ICASSP 2003, Hong Kong, April, 2003; now can-
celled, but papers to be published in conference proceedings.

4. P.J. Schreier and L.L. Scharf, “Canonical Coordinates for Reduced-
Rank Estimation of Improper Complex Random Vectors,” ICASSP
92002, Orlando, FL, May 13-17, 2002.

5. P.J. Schreier and L.L. Scharf, “Low Rank Approximation of Complex
Random Vectors,” 35th Asilomar Conf Signals, System, and Comput-
ers, Pacific Grove, CA, Nov 2001.

5.3 Open Questions

linear and non-Hermitian quadratic There is nothing we can add to this
Continuing work in this area would integrate widely linear processing into
our work on CDWF's and the clustering of large arrays into smaller subarrays
in order to trade beamforming for diversity combining.

6 Time-Varying Spectrum Analysis

6.1 Narrative

In our view, most of sonar array processing is imaginative time-frequency-
wavenumber processing from multisensor data, making it a topic in time-
frequency analysis. In sonar and radar the frequency variable is a vector
of frequency and wavenumbers (or equivalently bearing angles). When this
time-frequency distribution is averaged over frequency, it is a broadband
bearing-time plot, and when averaged over time it is a FRAZ plot. When
it is read at a single frequency, it is a narrowband bearing-time plot, and
when averaged aver time, it is a narrowband bearing response pattern. When
averaged over time and frequency, it is a broadband bearing response pattern.
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We have derived a stochastic time-frequency distribution, and kernel
methods for estimating it, that is more insightful to us than any others in
the literature. Ref [1] below develops the theory of the Rihaczek distribution
and proposes a kernel method for estimating it.

6.2 References

1. L.L. Scharf, Peter Schreier, and Alfred Hanssen,“The Hilbert Space
Geometry of the Stochastic Rihaczek Distribution,” IEEE Trans Sig-
nal Proc, re- submitted June 2004; also L.L. Scharf and B. Friedlan-
der, “Toeplitz and Hanke! Kernels for Estimating Time-Varying Spectra
of Discrete-Time Random Processes,” IEEE Trans Signal Proc, vol 49,
no 1, pp 179-189, Jan 2001; also L.L. Scharf, B.J. Friedlander, P. Flan-
drin, and A. Hanssen, “The Hilbert Space Geometry of the Stochastic
Rihazek Distribution,” 35th Asilomar Conf Signals, System, and Com-
puters, Pacific Grove, CA, Nov 2000.

2. A. Hanssen and L.L. Scharf,“A Theory of Time-Varying Polyspectra,”
IEEE Trans Signal Proc, vol 51, no 5, pp 1243-1252, May 2003; also
A.H. Hanssen and L.L. Scharf,“A Theory of Higher-Order Rihaczek
Spectra,” Proc. IEEE International Conference on Acoust, Speech,
Signal Proc, vol 2, pp 1457-1460, Orlando, FL, May 13-17, 2002; also
A H. Hanssen and L.L. Scharf, “Polyspectra for Harmonizable Stochas-
tic Processes,” 36th Asilomar Conf on Signals, Systems, and Comput-
ers, Pacific Grove, CA, Nov 4-7, 2002; also A. Hanssen and L.L. Scharf,
“Polyspectra for Nonstationary Stochastic Processes,” NORSIG, 5th
Nordic Signal Processing Symposium, Tromso, Norway, Oct 4-6, 2002.

6.3 Open Questions

In our opinion, the literature on time-frequency distributions has been mis-
directed to deterministic analysis of deterministic waveforms, with a view to
characterizing the time-frequency content of a measured pulse. This runs
counter to sonar signal processing, where there is less interest in any particu-
lar realization of a random process and more interest in the source that could
have produced it. For example, two realizations of a random process may
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look quite different, but sensible spectrum analysis will reveal that they were
produced by the same source, with a characteristic spectrum. The stochas-
tic Rihachek distribution is faithful to the idea of sonar signal processing.
Moreover, it extends easily to functions of multidimensional fields, as in the
time and space series produced by multisensor arrays. Thus, although ONR
remains wary of claims for time-frequency distributions, we continue to think
that with sensible adaptation of the stochastic Rihaczek distribution, there
may be room for improvement of wideband displays of frequency-wavenumber
(or bearing) distributions that vary with time. Moreover, it now seems clear
that there is a direct connection between the problem of nonstationary spec-
trum analysis and the identification of channel scattering fundtions in active
sonar. So, continuing work in this area would involve

e extension of the Rihaczek spectrum to vector functions of multidimen-
sional space-time fields,

o development of kernel estimators of the the Rihaczek spectrum,

o development of a theory of Rihaczek distributions for estimating sonar
scattering functions.

7 Array Simulator

7.1 Narrative

We have programmed in MATLAB an extensive multisensor array simula-
tor. This simulator models channels with fairly arbitrary spatial and tem-
poral coherence of the propagating fields. Thus a full range of beamforming
algorithms can be tested against simulated array data. The resulting beam-
former outputs are displayed as bearing responses or as bearing time plots.
We have programmed all standard beamformers, and most modern reduced-
rank beamformers that SVD sample covariance matrices and shape singular
values.

7.2 References

1. R. Sipes, “An Array Simulator for Beamforming,” Colorado State Uni-
versity Report, Dec 2002. '
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7.3 Open Questions

Continued development of our array simulator would involve by programming
the following features into the software:

o discrete multipath so that the effects of correlated multipath can be
modelled,

e coherence testing so that algorithms for clustering large arrays into
subsarrays can be tested,

o MIMO versions of the CDWF so that true space-time versions of sub-
space expanding filters can be implemented.
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“Adaptive Subspace Detectors,” IEEE Trans Signal Processing, vol 49, No
1, pp 1-16, Jan 2001, written under ONR support.
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